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ABSTRACT 
  

Mesenchymal stem cells (MSCs) are currently available for a range of applications and have become a good 
material for regenerative medicine, tissue engineering, and disease therapy. MSCs are self-renewing, 
multipotent progenitor cells with multilineage potential to differentiate into cell types of mesodermal origin, 
such as adipocytes, osteocytes, and chondrocytes and exert potent immunosuppressive potentials. In the present 
review, we highlight the currently reported variations in the differentiation potential of MSCs from different 
tissue sources, the minimal criteria to define MSCs from various tissue environments and provide a detailed 
description of MSCs surface markers. Furthermore, MSCs immunomodulatory features secrete cytokines and 
immune receptors which regulate the microenvironment in the host tissue also revisits in detail. We propose 
that there are likely more sources of MSCs waiting to be discovered. We need to Standardize MSCs 
characterization by selecting markers for isolation, cellular and molecular mechanisms involved in MSC-
mediated immune modulation, and other functionalities of MSCs should be characterized prior to use in clinical 
applications. 
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INTRODUCTION: 

Stem cells represent a novel cell type in the body. Stem 
cells have two features: the ability to differentiate along 
different lineages and the ability to self-renew and 
maintain tissue homeostasis. Stem cells can be multi-
plied in large Stem cells are broadly classified based on 
their source into embryonic (hESCs) and adult (ASCs) 
stem cells. Bhartiya, (2013) Embryonic stem cells are 
pluripotent in nature and can be differentiated into 200 
odd cell types where as the  adult stem cells are isolated 
from adult body tissues and are multi-to unipotent in 
nature (Thomson et al., 1998). MSCs are adult stem 
cells which can be isolated from human and animal 

sources with the capacity to differentiate into meso-
dermal lineage. MSCs and their multiline age were first 
found by Friedenstein via studies on the mouse bone 
marrow in the 1960s (Friedenstein et al., 1987; Frie-
denstein et al., 1976; Friedenstein, 1966).  
 

The multiline age differentiation potential of adult 
human MSCs from bone marrow was described by 
Pittenger and group. They have been isolated from 
almost all tissues including per vascular area (Pittenger 
et al., 1999). In view of many studies till now, neither 
single definition nor a quantitative assay to help in the 
identification of MSCs in mixed population of cells is 
available; some biomarkers are available for identi-
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fication of human MSC (hMSC). In 2006 a set of mar-
kers and cell characteristics has been proposed by the 
International Society for Cellular Therapy has proposed 
minimum criteria to define MSCs as these cells (a) 
should exhibits plastic adherence; (b) possess specific 
set of cell surface markers, i.e. cluster of differentiation 
CD73, D90, CD105 and lack expression of CD14, 
CD34, CD45 and human leucocyte antigen-DR (HLA-
DR); and (c) have the ability to differentiate in-vitro 
into adipocyte, chondrocyte and osteoblast (Crisan et 

al., 2008). The availability and culturally expandable in 
vitro with special genomic stability and less ethical 
issues, marking these incredible cells importance in cell 
regenerative therapy and medicine (Dominici et al., 
2006; Ullah et al., 2015). The resent study is the con-
cise review article to gather available the information 
about stem cell sources, identification makers, 
Paracrine secretion, Immunomodulation by MSCs and 
their importance in regenerative therapies. 

 

Human Mesenchymal Stem Cell (HMSC) Sources: 

The bone marrow (BM) has been the prevailing source 
of MSCs in humans (Mushahary et al., 2018). How-
ever, while BM is a rich source of hematopoietic stem 
cells, it constitutes only a rare MSC population (Li et 

al., 2016) BM-derived MSC (bmMSC) supply is the 
painful harvesting procedure marking   their application 
in research and in the clinical setting limited. Over 
time, a number of other tissues have been identified as 
alternative sources for hMSC. Today, MSC can be iso-
lated from multiple tissues (Ullah et al., 2015). The 
human MSC (hMSC) properties can vary greatly 
depending on multiple parameters including tissue 
source, isolation method and medium composition and 
several studies mentioned variations in the differen-
tiation potential of MSC from different tissue sources. 
Table 1 summaries some of the currently used tissue 
sources and the respective confirmed differentiation 
potentials. 

 

Table 1: Summary of hMSCs tissue sources and In-vitro differentiation potentials. 

SN Source In vitro differentiation References 

1. Bone Marrow 

Osteocytes, chondrocytes, adipocytes 
(Li et al., 2016; Mamidi et al., 2012; Otsuru et al., 

2013; Ranera et al., 2013) 
Hepatocytes (Zhang et al., 2011) 

Cardiomyocytes (Stock et al., 2014) 
Pancreatic cells (Xu et al., 2004; Tang et al., 2012; Gabr et al., 2013) 
Neuronal cells (Phadnis et al., 2011; Barzilay et al., 2009) 

2. Adipose Tissue 

Osteocytes, chondrocytes, adipocytes (Barzilay et al., 2009; Wilkins et al., 2009; 
Pendleton et al., 2013) 

Hepatocytes (Wagner et al., 2005) 
Cardiomyocytes (Baglioni et al., 2009) 
Pancreatic cells (Wang et al., 2014) 
Neuronal cells (Choi et al., 2010; Timper et al., 2006) 

3. 
Umibical cord, 
Umibical cord 

blood 

Osteocytes, chondrocytes, adipocytes (Kang et al., 2003; Miao et al., 2006) 
Hepatocytes (La Rocca et al., 2009; Baek et al., 2014) 

Endothelial like cell (Wilkins et al., 2009) 
Pancreatic cells (Hang et al., 2014) 
Neuronal cells (An et al., 2014) 

4. 
 

Dental Tissue 

Osteocytes, chondrocytes, adipocytes (Prabakar et al., 2012; Zhao et al., 2014) 
Pancreatic cells (Huang et al., 2009; Hilkens et al., 2013) 
Neuronal cells (Govindasamy et al., 2011; Kanafi et al., 2013) 
Melanocytes (Zhao et al., 2014) 

5. Amniotic fluid 
Chondrocytes, adipocytes (Völlner et al., 2009; Wang et al., 2010) 

Neuronal cells (In't Anker et al., 2003) 

6. 
Skin- and foreskin-

derived MSCs 
Osteocytes, chondrocytes, adipocytes (Tsai et al., 2004; CaiH et al., 2010) 

Myocytes (Tsai et al., 2004) 

7. 
Limb bud-derived 

MSCs 

Osteocytes, adipocytes (Bartsch et al., 2005) 
Hepatocytes (Bartsch et al., 2005) 

Neuronal cells (Bartsch et al., 2005) 

8. Placenta 
Adipocytes, Osteocytes (Riekstina et al., 2008; Jiao et al., 2012) 

Endothelial like cell (Jiao et al., 2012) 
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Neuronal cells (Jiao et al., 2012) 

9. Salivary gland 
Osteocytes, chondrocytes, adipocytes 

(Raynaud et al., 2012; Rotter et al., 2008; Sato et al., 
2007; Baek et al., 2014) 

Pancreatic cells (Sato et al., 2007; Baek et al., 2014) 
10. Synovial fluid Osteocytes, chondrocytes, adipocytes (Sui et al., 2020; Morito et al., 2008) 

11. Wharton’s jelly 
Osteocytes, chondrocytes, adipocytes 

(Hatakeyama et al., 2017; Hou et al., 2009; 
Salehinejad et al., 2012; Christodoulou et al., 2013) 

Hepatocytes (Yoon et al., 2013) 
Neuronal cells (Anzalone et al., 2010) 

 

Markers for MSC Identification and Verification: 

The International Society for Cellular Therapy (ISCT) 
published the minimal criteria for defining MSCs in 
2006. The ISCT proposed positive and negative mar-
kers that enabled researchers to distinguish MSCs from 
other cells in the bone- marrow compartment. The 
negative markers were selected to include surface anti-
gens that are expressed by hematopoietic cells, while 
the positive markers were selected to include surface 
antigens that are absent from most hematopoietic cells. 
It is well established that cultured colonies of MSCs ex-
press CD105, CD73, and CD90, but do not express 
CD45, CD34, CD14 or CD11b, CD19, and HLA-DR 
(Datta et al., 2011; Karystinou et al., 2009) Table 2. 
Some labeling strategies have also been used to succ-
essfully isolate MSCs enriched for markers such as 
STRO-1 (Saeedi et al., 2019; Gronthos et al., 2003; 
Kuroda et al., 2010; Psaltis et al., 2010) CD146 
(Bensidhoum et al., 2004; Covas et al., 2008), SSEA-4 
(da Silva Meirelles et al., 2015; Gang et al., 2007), 
CD271 (NGFR) (Battula et al., 2008; Vaculik et al., 
2012) antigen 1 (MSCA-1). ISCT acknowledges that 
the criteria must be met with some flexibility, parti-
cularly as they relate to expression of the negative mar-

ker, HLA Class II. Specifically, HLA Class II can be 
expressed by MSCs under certain conditions, such as 
cytokine stimulation. Therefore, cells that meet all 
other criteria, but are also positive for HLA Class II, 
can be designated as MSCs if an adjective is used to 
indicate that the cells were stimulated. According to the 
ISCT, CD34 is a negative marker of MSCs. However, 
some reports suggest that the CD34 negative status is 
an artifact of cell culture condition (Pilbauerová et al., 
2019). In fact, several groups have shown that MSCs 
isolated from adipose tissue express CD34 at the time 
of isolation but lose expression while in culture (Lin et 

al., 2012; Quirici et al., 2010). Expression of CD34 by 
MSCs is also supported by the fact that the STRO-1 
antibody (Clone STRO-1), which is commonly used to 
identify MSCs, was developed using CD34+bone 
marrow as the immunogen (Pachón-Peña et al., 2011). 
The debate over the use of CD34 as a negative marker 
raises the possibility that markers may vary depending 
on the MSC tissue source (Kim & Cho, 2013). For 
specific immunophenotypic patterns, the variety of 
tissue sources of peripheral stem cells that could be iso-
lated by their lineage-specific surface markers are 
summarized in Table 3. 

 

Table 2: Minimal criteria of mesenchymal stem cells. 

Surface markers 
Differentiation 

potential 
 

Other 

characteristics 

Positive Marker  Biological Role  

CD73+ Osteogenic Catalyzes the conversion of AMP to bioactive adenosine Adherence to plastic 

CD90+ Adipogenic Wound repair, cell-cell and cell-matrix interactions 
Spindle-shape 
morphology 

CD105+ Chondrogenic 
Vascular homeostasis; modulates TGF-beta functions via 

interaction with TGF-beta RI and TGF-beta RI 
 

Negative Marker  Used to Exclude  

CD34–  Primitive hematopoietic cells and endothelial cells  
CD45–  Leukocytes  
CD11b–  Monocytes and macrophages  
CD14–  Monocytes and macrophages  
CD19–  B cells  
CD79a–  B Cells  

HLA-DR–  B cells, T cells, monocytes, macrophages  
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Table 3: Surface Marker Expression Profiles of Main MSC Types. 

SN MSCs CD Marker Expression Reference 

1 ADSCs CD9+, CD10+, CD13+, CD29+, CD44+, CD49D+, CD49E+, CD54+, 
CD55+, CD71+, CD73+, CD90+, CD105+, CD106+, CD146+, CD166+, 

STRO-1+ 
CD11B-, CD14-, CD19-, CD31-, CD45-, CD79A-, CD133-, CD144-, HLA-DR- 

(Chan et al., 2014); 
Vasiliki, 2016; Huang 

et al., 2013) 

2 BMMSCs CD13+, CD33+, CD44+, CD73+, CD90+,CD105+, CD166+, CD28+, 
HLA class I+ 

CD14-,CD34-, CD45- 

(Dominici et al., 2006; 
Zuk, 2010;  

Gauthaman et al., 2010) 
3 PDLSCs STRO-1+, CD13+, CD29+, CD44+, CD59+, CD90+, CD105+ (Huang et al., 2009; 

Boxall & Jones 2012) 
4 TBMSCs CD73+, STRO-1+, CD105+ (Pérez-Silos et al., 2016) 
5 SMMSCs CD44+, CD73+, CD90+, CD105+ (Tuli et al., 2003) 
6 PMSCs CD90+ (Djouad et al., 2005) 
7 MMSCs CD34+, CD117+, Sca1+ (Johnstone et al., 1998; 

Jankowski et al., 2002) 
8 SSCs CD105+, CD90+, CD73+, CD29+, CD13+, CD44+, CD59+, VCAM-1+, 

ICAM-1+, CD49+, CD166+, SH2+, SH4+, EGFR+, PDGFRα+, CD271+, 
Stro-1+, CD71+, CD133+, CD166+, Keratin-19+ 

CD10-, CD11b-, CD14-, CD34-, CD49d- and HLA-DR- 

(Qu-Petersen et al., 
2002; Vishnubalaji et 

al., 2012) 

9 WJ-MSCs CD13+, CD29+, CD44+, CD51+, CD73+, VCAM-1, CD166 
CD90+, CD105+, SH2, SH3, SSEA-1 

(Orciani et al., 2010; 
Gauthaman et al., 2010) 

10 Hepatic 
stem cells 

EpCAM+, E-cadherin+, CD133+, CD29+ (Yazdekhasti et al., 2018) 

11 Peripheral 
Blood MSC 

CD44+, CD54+, CD90+, CD105+ (SH2), CD166+ 

CD14-, CD34-, CD45-, CD31– 
(Kim & Cho, 2013) 

12 DPSCs CD13+, CD29+, CD44+, CD73+, CD90+, CD105+, CD146+ STRO-1+ 
CD45-,CD31-, CD46-, CD106- 

(Tosh & Strain 2005; 
Paduano et al., 2016) 

 

Note: MSCs: mesenchymal stem cells; CD: cluster of differentiation; ADSCs: adipose-derived stem cells; BMMSCs: bone marrow- 
derived mesenchymal stem cells; HLA: human leukocyte antigen; PDLSCs: periodontal ligament-derived stem cells; TBMSCs: trabecular 
bone-derived mesenchymal stem cells; SMMSCs: synovial membrane- derived mesenchymal stem cells; PMSCs: periosteum-derived 
mesenchymal stem cells; MMSCs: muscle-derived mesenchymal stem cells and satellite cells; Sca1: stem cell antigen 1; VCAM: vascular 
cell adhesion molecule; ICAM: inter-cellular adhesion molecule; SSCs: skin stem cells; SH2: CD105 antibody; SH4: CD73 antibody; 
EGFR: epidermal growth factor receptor; PDGFRα: platelet-derived growth factor receptor α ; WJ-MSCs: Wharton’s jelly mesenchymal 
stem cells; SH3: CD73 antibody; EpCAM: epithelial cell adhesion molecule; DPSCs: dental pulp stem cells.  
 

Mesenchymal Stem Cell Markers Co-expression: 

The purity of MSCs can be increased by using more 
than one MSC marker for positive selection. As an 
example, a recent publication demonstrated that selec-
tion of mesenchymal stem cells using CD271/NGF R, 
CD90/Thy1, and CD106/VCAM-1 resulted in a highly 
clonogenic population of cells (Simmons & Torok-
Storb, 1991). Specifically, the addition of CD106 as a 
marker for positive selection led to isolation of cells 
with five times greater clonogenic potential compared 
to the cells isolated with CD271/and CD90 alone. The 
degree of co expression of surface markers on MSCs 
also studied (Rasmusson et al., 2003). The cells sub-
sets detected for the presence of MSCA-1/TNAP, 
CD271/NGF R and CD56/NCAM from whole cell 
population of   Human BM-MNCs were analyzed and 
reported that the CD271 expression detected and CD56 

expression not detected cells expressed CD106 and 
CD146 whereas, CD271 and CD56 presences detected 
cells exclusively expressed CD166 (Mabuchi et al., 
2013) CD271 and CD56 double positivity enriched 
SSEA-4 expression and MSCA-1 expression. The study 
conducted by Vaculik et al. (2012), explains the ex-
pression pattern of SSEA-4 in dermis was analogous to 
CD271. CD271 and SSEA-4 both co expressed with 
CD45 detected cells, in human dermis where as CD73 
and CD105 are co expressed. The human dermis minor 
population of CD73 detected cells are not expressed 
CD90 (Battula et al., 2008). Dermis CD271 positive 
cells were also positive for CD73and CD105, whereas 
the majority of CD271 positive cells are CD90 negative 
(Battula et al., 2008). Several other studies have been 
performed recently aimed at achieving high-purity BM 
MSCs using a combination of CD271 and markers 
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other than CD73, CD105, or CD90 (Pérez-Silos et al., 
2016) for example, CD146 has attracted a lot of interest 
recently, by linking CD146 expression on MSCs with 
their pericyte topography and function (Battula et al., 
2009; Pittenger et al., 1999). It was also reported that 
CD146 expression on CD271 positive MSCs correlates 
more with their in situ localization (Sacchetti et al., 
2007). Maijenburg further reported that the distribution 
of CD271 and CD146 and subsets correlates with donor 
age. The main subset in pediatric and fetal BM was 
reported to be CD271 expression and CD146 expres-
sion, whereas the subset of CD271 expression and 
CD146 not expression detected population was domi-
nant in adult marrow (Tormin et al., 2011). The endo-
metrial MSC-like cells (eMSCs) can be purified on the 
basis of their co expression of two per vascular mar-
kers, CD140b/platelet-derived growth factor receptor β 
(PDGFRβ) and CD146 (Maijenburg et al., 2012). The 
first novel single marker, W5C5 for isolation of 
endometrial MSC-like cells (eMSCs) (Schwab & 
Gargett et al., 2007; Masuda et al., 2012) 
 

Immunomodulatory Properties of MSCS: 

One of the main advantages of MSCs is their immuno-
modulatory properties. MSCs grown in vitro have the 
ability to interact and regulate the function of the 
majority of effectors cells involved in the processes of 
primary and acquired immune response. Due to low ex-
pression of MHC I and lack expression of MHC class II 
along with co-stimulatory molecules, like CD80, CD40 
and CD86, MSCs are unable to bring substantial all 
reactivity and these features protects MSCs from 
natural killer (NK) cells lysis (Masuda et al., 2012).  
 

Moreover, it is observed that human BM-MSCs were 
not recognized by NK cells, as they expressed HLA-
DR molecules (Rasmusson et al., 2003) MSCs exert 
immunomodulatory effects by inhibiting the com-
plement-mediated effects of peripheral blood mono-
nuclear cell proliferation (Spaggiari et al., 2006; Tu et 

al., 2010) blocking apoptosis of native and activated 
neutrophils, as well as reducing the number of neu-
trophils binding to vascular endothelial cells, limiting 
the mobilization of these cells to the area of damage 
(Moll et al., 2011; Cassatella et al., 2011). In response 
to inflammatory molecules such as interleukin-1 (IL-1), 
IL-2, IL-12, tumor necrosis factor-a (TNF-α) and inter-
feron-gamma (INF-ɣ), MSCs secrete an array of growth 

factors and anti-inflammatory proteins with complex 
feedback mechanisms among the many types of 
immune cells summarize in Table 4 (Munir et al., 
2015; Shi et al., 2015; Cagliani et al., 2017; Weiss & 
Dahlke, 2019; Maria et al., 2017; Zhao et al., 2016).  
 

The key immunomodulatory cytokines include prosta-
glandin 2, TGF-b1, HGF, SDF-1, nitrous oxide, indo-
leamine 2,3-dioxygenase, IL-4, IL-6, IL-10,IL-1 rec- 
eptor antagonist and soluble tumor necrosis factor-a 
receptor (Murphy et al., 2013). MSCs prevent pro-
liferation and function of many inflammatory immune 
cells, including T cells, natural killer cells, B cells, 
monocytes, macrophages and dendritic cells. MSCs can 
block the differentiation of CD34+ cells isolated from 
the bone marrow or blood monocytes into mature 
dendritic cells both by direct contact as well as by 
secreted paracrine factors (Nauta et al., 2006; Jiang et 

al., 2005). They inhibit the transformation of immature 
dendritic cells into mature forms and limit the mobi-
lization of dendritic cells to the tissues. (Su et al., 2011) 
Due to the influence of MSCs, M1 (pro-inflammatory) 
macrophages are transformed into M2 type cells with 
an anti-inflammatory phenol-type, and the interleukin 
(IL)-10 secreted by them inhibits T-cell proliferation 
(Chen et al., 2014; Gao et al., 2014).  
 

In vitro studies have demonstrated a direct immune-
modulatory effect of MSCs on lymphocytes by sup-
pression of activated CD4+ and CD8+ T cells and B-
lymphocytes was observed (Sharif et al., 2019; Glennie 
et al., 2005). In addition, MSCs reduce the level of pro-
inflammatory cytokines synthesized by T-lymphocytes, 
such as tumor necrosis factor (TNF)-α and interferon 
(IFN)-γ (Yañez et al., 2006) and increase synthesis of 
anti-inflammatory cytokines, for example, IL-4. MSCs 
also have the ability to limit the synthesis of immune-
globulins like immunoglobulin (Ig) M, IgG, and IgA 
classes secreted by activated B cells, thereby blocking 
the differentiation of these cells to plasma cells 
(Corcione et al., 2006). MHC class I chain-like gene A 
(MICA) together with TLR3 ligand and other immune-
regulatory proteins kept the MSCs safe from NKs 
invasion (Giuliani et al., 2014). Together with other 
properties, these immunomodulatory features makes 
MSCs one of the feasible stem-cells sources for 
performing cell transplantation experiments. 
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Table 4: Anti-inflammatory mechanisms of MSCs. 

Mechanism Effects Target cell 

PGE2/direct contact ↓TNF-α, IL-12, differentiation and activation, Impairs effect on 
resting NK cell and ↑IL-23 

Dendritic cells 

PGE2, IL-6, IL-8 and 
SDF-1 

↑ IL-10 Immuture Dendritic cells 

PGE2, IDO, HGF, 
TGF-b1 and NO 

IL-10 
IL-17 

FOXP3-Treg 
Gal-1 

↓CD4+T-cell proliferation by S-phase entry block and Go/G1 phase 
arrest Inhibits T-cell function, ↓IL-12 

Inactivate TH-1cells 
↓TH 17-cells proliferation 

↑IL-10, IL-13 
Antiproliferative effects on activated T cells, supports the survival of 

naïve T cells 

T cells (CD4 +, 
helper T cells) 

 
 
 

sHLA-G5 
IL-10, 

 

↓cytotoxicity 
↑T-reg production and ↓ TH-1, TH-2, TH-17 Cells 

T cells (CD8 +, 
cytotoxic T cells) 

T-reg cells 
sHLA-G5 

PGE2, HGF, TGF-b1, 
IDO, NO and PD-L1 

↓Treg differentiation 
↓Ig antibody production by B cell 

↓B-cell proliferation by Go/G1 phase arrest 
↓B-cell chemotaxis 

B cells 

PGE2, IDO, sHLA-G5, 
HGF, TGF-β1 

IL-15 

↓INF-ɣ and IL-2 
↓NK cell proliferation 

↓cytotoxicity 
NK cells 

PGE2 
 

↓Monocyte proliferation by Go/G1 phase arrest 
↓Monocyte difference to DC 

Monocytes 

IL-6 
TSG-6 

PGE2, IL-RA, 
Phagocytosis 

↓TNF-α 
↓NF-kB and IL-10 

Converts M1 (pro-inflammatory) type to 
M2 (anti-inflammatory) type macrophages 

Macrophages 

IL-8,  IL-6 
 

↓ f-MLP- respiratory burst 
↓apoptosis 

Neutrophils 

VEGF 
IL-1Rα 
sTNF-R 

Pro-angiogenic, Increased nutrient, 
O2 and waste transport 

Antagonizes IL-1 
Inhibits TNF-α production 

No specific target 

 

Note: HGF, hepatocyte growth factor; HLA, human leukocyte antigen; IDO, indoleamine 2,3-dioxy-genase; IL-1Ra, IL-1 receptor 
antagonist; INF, interferon; MMP, matrix metalloproteinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cell; NK, 
natural killer; NO, nitrous oxide; PD-L1, programmed cell death ligand-1; PGE2, prostaglandin 2; SDF-1, stromal cell-derived factor-1; 
sTNF-R, soluble TNF-areceptor; TGF, transforming growth factor; TNF, tumor necrosis factor; TSG, tumor necrosis alpha-stimulating 
gene; VEGF, vascular endothelial growth factor; Gal-1, Galectin-1; FOXP, Forkhead box (FOX) protein; f-MLP, N-formyl-l-methionin-l-
leucyl-l-phenylalanine.  
 

Furthermore, it is also important to note that MSCs 
from different sources may differ in their mechanisms 
and capacities for immune-modulation (Mattar & 
Bieback, 2015). Because of their trophic and immune-
modulatory functions, MSCs are generally considered 
to possess greater advantages in cell-based regenerative 
medicine, MSCs an important regulator of the immune 
tolerance and attractive therapeutic target for limiting 
autoimmune inflammation. 
 

CONCLUSION: 

Mesenchymal stem cells have been isolated from a 
wide range of species and tissues using several tech-

niques. MSCs are isolated as a heterogeneous popu-
lation of cells that differ in growth kinetics and differ-
entiation potentials. A large number of markers have 
been brought forward to facilitate the isolation of MSCs 
from their surrounding environment or the selection of 
MSCs with high stemness. With their ability to differ-
entiate into multiple lineages, secrete factors related to 
immune regulation, and migrate to-ward sites of infla-
mmation, All these properties of MSCs make them 
distinct from other stem cells and can be used in future 
cell replacement therapy and many other clinical impli-
cations. In this review, we concisely bring up the 
current data available for MSCs isolation sources, 
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characterization markers and its immunomodulatory 
properties. The future MSCs research should focus on 
finding more suitable markers to isolate the source-
specific MSCs, basic understanding of growth regu-
lators in differentiation and trans-differentiation and its 
immunomodulatory properties to modify the host 
immune environment. 
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